

Acoustic Testing Laboratory College of Science & Technology

Air Handling Units Acoustic Insulation Performance Tests

To BS EN ISO 10140-2 (2010)

Report No. 1429 Report No. 2060

Carried out by Salford University Acoustic Testing Laboratory For Air Handlers Northern

SOUND REDUCTION INDEX FRAME & PANEL TESTS

Carried out by: - The University of Salford Acoustic Testing Laboratory

Personnel: - Daniel McCaul – Technical Manager Ian Rattigan – Laboratory Manager David Pinchbeck – Air Handlers Northern

Report No 1429 and 2060

OBJECTIVE

To obtain the true casework noise breakout from Mechanical Ventilation Plant. It is only possible to achieve this if the frame and panel assembly is tested with a large enough area sample to give a true representation of an Air Handling System.

In Practice the framework can leak sound which will flank the panels; therefore our testing programme includes various frame insulation arrangements.

Acoustic Testing Laboratory College of Science & Technology The University of Salford Salford, Greater Manchester M5 4WT, United Kingdom

T: +44 (0) 161 295 4615 F: +44 (0) 161 295 4456 E: d.j.mccaul@salford.ac.uk

TEST REPORT No : 1429-A

DATE OF ISSUE : 7 November 2013

BS EN ISO 10140-2 : 2010 INTERNATIONAL STANDARD METHOD FOR MEASUREMENT OF AIRBORNE SOUND INSULATION OF BUILDING ELEMENTS

CLIENT:

JOB NUMBER: MANUFACTURER: TEST SAMPLE: DATE RECEIVED: DATE OF TEST: Air Handlers Northern Bute Street Weaste, Salford M50 1DU ACOUS/01429 Air Handlers Northern Various panel enclosure systems 19 July 2013 26 September - 1 October 2013

Signed: Approved:

I G Rattigan Laboratory Manager

D J McCaul Technical Manager

Acoustic Testing Laboratory College of Science & Technology The University of Salford Salford, Greater Manchester M5 4WT, United Kingdom

T: +44 (0) 161 295 4615 F: +44 (0) 161 295 4456 E: d.j.mccaul@salford.ac.uk

TEST REPORT No : 2060-1

DATE OF ISSUE : 19 February 2015

INTERNATIONAL STANDARD METHOD FOR MEASUREMENT OF AIRBORNE SOUND INSULATION OF BUILDING ELEMENTS BS EN ISO 10140-2 : 2010

CLIENT:

JOB NUMBER: TEST SAMPLE: MANUFACTURER: DATE RECEIVED: DATE OF TEST: Air Handlers Northern Bute Street Weaste Salford M50 1DU ACOUS/02060 Various Acoustic Enclosure Panels Client 5 November 2014 7 – 9 & 12 January 2015

Approved:.

Signed:...

I G Rattigan Laboratory Manager

C Lomax Quality Manager

Test Samples

Description of Test Samples

The following panel enclosure systems built and tested in the 3600mm x 2400mm aperture in the transmission suite. A hollow aluminium pentapost frame was installed within the aperture and fixed in place with clamping bolts. The frame contained a recess nominally 45mm deep with a 6mm foam seal fitted to the closing edge of the open frame section.

FRAME DETAILS

Illustration 30

50mm PANEL FIXING METHODS

Illustration 31

25mm PANEL FIXING METHODS

Illustration 32

LIFTING HANDLES

Illustration 33

FIXING METHODS FOR PENTAPOST FRAME TO BRICK WALL CHAMBER

DESCRIPTION OF TEST PROCEDURE

The test procedure adopted follows that detailed in BS EN ISO 10140: Part: 2010, "Acoustics – Laboratory measurements of sound insulation of building elements; Part 2: Measurement of airborne sound insulation".

The measurements are performed in the large transmission suite at the University of Salford. The suite comprises two structurally isolated reverberant rooms with a test opening between them in which the test specimen is inserted. The vertical sides of the test aperture and the base are made from dense brick, whilst the soffit is made from reinforced concrete. Both rooms have been designed with hard surfaces and non-parallel walls. The smaller source room has 6 plywood diffusers and the larger receiving room has 11 plywood diffusers, to increase the diffusivity of the sound field in these areas.

The test involves producing a known sound field in the source room and measuring the resultant sound level difference between the source room and the receiving room with the specimen installed in the test aperture. This level difference is then corrected so as to take into account the equivalent absorption area of the receiving room.

(1)

The Sound Reduction Index, R (dB), is defined in BS EN SIO 10140 – Part 2: 2010 as:

$$R = L_1 - L_2 + 10 \log_{10} \frac{s}{A}$$

Where:

 L_1 is the average sound pressure level in the source room (dB) L_2 is the average sound pressur level in the receiving room (dB) S is the area of the rest specimen (m^2) A is the equivalent absorption area of the receiving room (m^2)

Generation of Sound Field in the Source Room

Wide band, random noise from the generator in the real time analyser was amplified and reproduced in the source room using alternately one of two fixed loudspeaker systems, (La, Lb and Lc). Omnidirectional loudspeakers were used. The output of the generator was set with the intention that the sound pressure level in the receiving room was at least 15dB higher than the background level in any frequency band. The loudspeakers were positioned in the corners of the room and at such a distance from the test specimen that the direct radiation upon it was not dominant.

Frequency Range of Measurements

The sound pressure levels were measured using one-third octave band filters. Measurements covered all the one-third octave bands having centre frequencies in the range from 50Hz to 5000Hz. At the request of the client, measurements were also taken at the one-third octave band frequencies 6.3 kHz, 8 kHz and 10 kHz. The sound reduction indices at these additional frequencies are presented in Appendix A.

Measurement of Sound Pressure Levels

Sound pressure levels were measured simultaneously in the source and receiving rooms using loudspeaker **La** as the sound source. Measurements were recorded at a minimum of 5 fixed microphone positions in each room, using an averaging time of 32 seconds and the average level in each room was calculated on an energy basis in each one-third octave frequency band. The procedure was then repeated with loudspeaker **Lb** and **Lc** as the sound source. The overall average level difference in each frequency band was then calculated as the arithmetic average of the two sets of results.

For each set of microphone/loudspeaker positions, the distances separating microphones from other microphones, room boundaries and diffusers, were greater than 0.7m and the distances separating microphones from the sound source and the test specimen were greater than 1m.

Measurement and Evaluation of the Equivalent Absorption Areas

The correction term of equation (1) containing the equivalent absorption area, *A*, was evaluated from the reverberation time and calculated using Sabine's formula:

$$A = \frac{0.16 \text{ V}}{\text{T}}$$

(2)

Where: V is the volume of the receiving room (m^3) T is the reverberation time (s)

The reverberation time of the receiving room was measured using a decay technique. The decays were produced by exciting the room with wide band random noise and stopping the excitation once the room became saturated. The resulting decaying sound field was monitored at 6 fixed microphone positions using a one-third octave band real time analyser. The sound spectrum was sampled at 32 millisecond intervals and stored in memory. Five decays were measured at each microphone position and averaged. The time taken for the sound to decay by 20dB was measured and multiplied by three to give the reverberation time. The measurements were repeated using an alternative sound source. The results from each set of position were averaged (ie 60 reverberation decays at each frequency).

EQUIPMENT

	Departmental Record No
Norwegian Electronics 1/3 octave band real time analyser type 840 with in-built random noise generator	RTA2
Quad 510 power amplifier	PA7
2 of omni-directional broadband loudspeakers (source room)	LS10-LS11
2 of broadband loudspeakers (receiving room)	LS3-LS4
3 of Bruel & Kjaer random incidence condenser microphones type 4166 in the source room	M2-M4
3 of G.R.A.S. random incidence condenser microphones type 40AP in the source room	M21,M22,M25
5 of Brunel & Kjaer random incidence condenser microphone type 4166 in the receiving room	M7-M9 M18, M19
1 if G.R.A.S. random incidence condenser microphones type 40AP in the receiving room	M20
2 of Norsonic Multiplexers type 834A	MP1-MP2
HP Brio Pentium personal computer and related peripheral equipment (printer, plotter, monitor etc.)	COM6
Yamaha GQ1031BII graphic equalizer	GEQ1

RESULTS

The sound reduction indices at one-third octave band intervals, R, are given in the tables overleaf.

Source room volume:	136m ³
Receiving room volume:	220m ³
Sample sizes:	2400mm x 3600mm

Recording Test Results in the Control Room

Sound Source Positions

Plywood Diffusers Receiving Room

SALFORD UNIVERSITY TEST REPORT 1429

The following enclosure panels, consisting of a layered core (described from receiver to source room) contained within two 0.7mm steel cassettes of a number of thicknesses; were then installed into the open sections and fixed in place using toggles located on the frame on the receiving room side of the system. All units reported are nominal unless otherwise stated.

<u>Test A</u>

Test Reference:	1429-1197
Sample Reference:	"PB50"
Sample Description:	45mm thick panel with a core consisting of four layers. The mass per unit area of one panel was measured to be equal to 34.2kg/m ^{2.}

<u>Test B</u>

Test Reference:	1429-1199
Sample Reference:	"ASPB50"
Sample Description:	45mm thick panel with a core consisting of three layers. The mass per unit
	area of one panel was measured to be equal to 35.2kg/m ² .

<u>Test C</u>

Test Reference:	1429-1200
Sample Reference:	"ASTSAS50"
Sample Description:	45mm thick panel with a core consisting of three layers. The mass per unit
	area of one panel was measured to be equal to 45.6kg/m ² .

<u>Test D</u>

Test Reference:	1429-1201
Sample Reference:	"ASTSFG50"
Sample Description:	45mm thick panel with a core consisting of three layers. The mass per unit
	area of one panel was measured to be equal to 38.1 kg/m ² .

Test E

Test Reference:	1429-1203
Sample Reference:	"ASTSPB50"
Sample Description:	Modifications were made by fixing Acoustic Barrier Insulation to the source
	room side of the frame.

Test F

Test Reference: Sample Reference: Sample Description:	1429-1206 "PBFG50 with 1.2mm plastisol" 45mm thick panel with a core consisting of three layers. The steel cassette on the source side of the system under test was replaced by a 1.2mm plastisol cassette. The mass per unit area of one panel was measured to be equal to 29.7kg/m ² .
<u>Test G</u>	

Test Reference:	1429-1208
Sample Reference:	"PB25"
Sample Description:	25mm thick panel with a core consisting of two layers. Profile sections were
	used to provide secure fitting between the panel and the frame toggles. The
	mass per unit area of one panel was measured to be equal to 22.2 kg/m ² .

TEST RESULTS TO BS EN ISO 10140-2(2010)

Certified by: Salford University Acoustic Testing Laboratory

Also given in the attached tables and computed from the one-third octave band sound reduction indices, is the weighted sound reduction index, R_w , calculated according to ISO 717/1-1996. This evaluation is based on laboratory measurement results obtained by an engineering method.

APPENDIX A

At the client's request, the sound reduction index was measured at the additional frequencies of 6.3 kHz, 8 kHz and 10 kHz, the results of which are presented below.

Test	Sound	Reduction Index,	R[dB]
Reference	6.3 kHz	8 kHz	10 kHz
1429-1197	39.8 ¹	40.1 ¹	32.6 ²
1429-1199	40.0 ¹	40.2 ¹	32.9 ²
1429-1200	34.5	24.3	7.4
1429-1201	39.9	40.1	35.5 ¹
1429-1203	48.2 ¹	46.9 ¹	37.1 ²
1429-1206	48.3 ¹	47.4 ¹	36.3 ²
1429-1208	46.3 ¹	45.4 ¹	35.2 ²

¹ Correction for background applied to the result ² Background levels too high – minimum value for *R*.

SALFORD UNIVERSITY TEST REPORT 2060

<u>Test H</u>

Test Reference:	2060-1673
Sample Reference:	"PB18 Double Skin"
Sample Description:	18mm nominally thick panel.
	The measured thickness and mass per unit area of one panel was measured
	to be equal to 18.0mm and 27.5kg/m ² respectively.

<u>Test I</u>

Test Reference:	2060-1678
Sample Reference:	"PB/TS/PB25 Triple Skin"
Sample Description:	25mm nominally thick panel.
	The measured thickness and mass per unit area of one panel was measured to be equal to 45.0mm and 41.0kg/m ² respectively.

Test J

Test Reference:	2060-1679
Sample Reference:	"AS/TS/SBP50 Triple Skin"
Sample Description:	50mm nominally thick panel.
	The measured thickness and mass per unit area of one panel was measured to be equal to 45.0mm and 53.6kg/m ² respectively.

<u>Test K</u>

Test Reference:	2060-1680
Sample Reference:	"PB/SPB25 Double Skin"
Sample Description:	25mm nominally thick panel.
	The measured thickness and mass per unit area of one panel was measured
	to be equal to 25.0mm and 34.2kg/m ² respectively

<u>Test L</u>

Test Reference:	2060-1681
Sample Reference:	"SBP18 Double Skin"
Sample Description:	18mm nominally thick panel.
	The measured thickness and mass per unit area of one panel was measured to be equal to 18.6mm and 30.6kg/m ² respectively.

Test M

Test Reference:	2060-1683
Sample Reference:	"AS/TS/FG50 Triple Skin"
Sample Description:	50mm nominally thick panel.
	The measured thickness and mass per unit area of one panel was measured
	to be equal to 45.0mm and 39.9kg/m ² respectively.

<u>Test N</u>

Test Reference:	2060-1684
Sample Reference:	"AS/TS/PB50 Triple Skin"
Sample Description:	50mm nominally thick panel.
	The measured thickness and mass per unit area of one panel was measured
	to be equal to 45mm and 49.9kg/m ² respectively.

<u>Test O</u>

Test Reference:	2060-1685
Sample Reference:	"FG/TS/PB50 Triple Skin"
Sample Description:	50mm nominally thick panel.
	The measured thickness and mass per unit area of one panel was measured
	to be equal to 45mm and 40.0kg/m ² respectively.

<u>Test P</u>

Test Reference:	2060-1686
Sample Reference:	"FG25 Double Skin"
Sample Description:	25mm nominally thick panel.
	The measured thickness and mass per unit area of one panel was measured
	to be equal to 45mm and 21.3kg/m ² respectively.

<u>Test Q</u>

Test Reference:	2060-1686
Sample Reference:	"FG50 Double Skin"
Sample Description:	50mm nominally thick panel.
	The measured thickness and mass per unit area of one panel was measured
	to be equal to 45mm and 23.3kg/m ² respectively.

<u>Test R</u>

Test Reference:	2060-1689
Sample Reference:	"AS/QS/PB50 Quadruple Skin"
Sample Description:	50mm nominally thick panel.
	The measured thickness and mass per unit area of one panel was measured to be equal to 45mm and 62.9 kg/m ² respectively.

<u>Test S</u>

Test Reference:	2060-1675
Sample Reference:	"FG18 Double Skin"
Sample Description:	18mm nominally thick panel.
	The measured thickness and mass per unit area of one panel was measured to be equal to 18.0mm and 20.9kg/m ² respectively.

<u>Test T</u>

Test Reference:	2060-1676
Sample Reference:	"FG/TS/SBP50 Triple Skin"
Sample Description:	50mm nominally thick panel.
	The measured thickness and mass per unit area of one panel was measured to be equal to 45mm and 43.3kg/m ² respectively.

<u>Test U</u>

Test Reference:	2060-1674
Sample Reference:	"AS25 Double Skin"
Sample Description:	25mm nominally thick panel.
	The measured thickness and mass per unit area of one panel was measured
	to be equal to 30.3mm and 31.3kg/m ² respectively.

APPENDIX A

At the client's request, the sound reduction index was measured at the additional octave band frequency of 8 kHz, the results of which are presented below.

Test Reference	Sound Reduction Index, <i>R</i> [dB] 8 kHz
2060-1673	39.6
2060-1674	40.8
2060-1675	39.9
2060-1676	41.5
2060-1678	40.1
2060-1679	39.6
2060-1680	39.6
2060-1681	39.2
2060-1685	40.3
2060-1686	39.7
2060-1687	40.4
2060-1689	43.7

AIR HANDLING UNIT CASEWORK SRI VALUES								
Reference	63Hz	125	250	500	1K	2K	4K	8K
		Hz						
FG18	18.3	18.1	24	38.8	39.9	34.5	33.1	39.9
FG25	16.5	16.6	26.6	38.1	39.2	33.4	32.1	39.7
FG50	15.7	18.4	33.7	36.2	37.5	32.4	35	40.4
PB18	21	25.9	28.2	29.3	33.1	34.5	33.7	39.8
SBP18	21.6	24.9	27.9	28	34.8	35.5	33.6	39.2
PB25	20.4	23.0	22.9	23.3	33.6	37	37.7	45.5
PBSBP25	22.5	26.2	29.4	30	36.4	35.2	33.6	39.6
PB50	21.8	23.8	22.1	26	35.6	35.2	32.0	40.1
AS25	19.9	23.5	29.4	36	39.1	34.1	34.5	40.8
ASPB50	20.8	21.3	29.6	39	41.4	34.8	32.8	40.2
PBFG50	19.6	18.3	33.3	39.8	38.6	36.1	39.3	46.8
TRIPLE SKIN								
PB/TS/PB25	23.8	26.6	29	30.6	36.7	35.6	33.3	40.1
PB/TS/FG50	21.1	21.0	36.3	39.2	41.7	34.7	32.9	40.2
SPB/TS/SPB50	21.7	24.2	36.4	37.3	37.6	33.4	35.7	41.5
AS/TS/FG50	21	23.7	34.2	36.1	37	32.7	36.2	40.3
AS/TS/PB50								
AS/TS/SBP50	24.1	27.1	34.8	37	37.2	33.5	36.2	39.6
AS/TS/AS50	21.6	25.6	32	37	40.8	33.6	32.9	24.3
QUADRUPLE SKIN								
AS/QS/PB50	24.1	36.6	34.7	39.8	40.7	37.8	39.7	43.7

Insertion Loss Graph's

The following graphs relate to the Test Reports 1429 & 2060. The test range for these graphs is 63KHz to 4K Hz, results for 8K Hz are given in Appendix 'A'

	surement of se	ound insulation of building elem	Date of test: 09/01/15
ent: nufacturer:		Air Handlers Northern Client	Date or test. 09/01/15
t room identif	ication:	Acoustic Transmission Suite	
t specimen m		Client	
duct identifica		FG50 DOUBLE SKIN	
scription of the	e specimen:	Acoustic Panel System Please refer to Section 1 for a	full description of the test object
ing time:		NAP	
tic pressure:		100.8 ± 0.0 kPa	
temperature:		20.2 ± 0.3 °C	THE FREQUENCY 63HZ IS NOT UKAS ACCREDITED
ative air humi	dity:	41.6 ± 3.0 %	
ss per unit are	a:	23.3 kg/m² -	Sound Reduction Index, R
a, S, of the te	st sample:	8.64 m ²	Shifted Reference Curve according to ISO 717-1
urce room volu		136 m ^a 60	· · · · · · · ·
ceiving room v	volume:	220 m ³	
Frequency	R		
f	1/1 octave		
[Hz]	[dB]	留 50	
		R	
63	15.2	Sound reduction index , R [dB]	
		Б	
125	18.4	ton 40	
120	10,4	a l	
1		ouno	
250	33.7	\$	
	194	30	
1			
500	36.2		
	1		
1000	37.5	20	
2000	32.4		
·	·····	10	
	1.5		
4000	35.0		
2			
		0	
		63	125 250 500 1000 2000 400
			Frequency, f, Hz →
	ording to BS E		the second second second second second
		-2 ; -4)dB	$C_{63-2000} = -2 \ dB \ C_{63-4000} = -2 \ dB \ C_{125-4000} = -2 \ dB$
		atory measurement results obtained	ed $C_{tr,63-2000} = -6 \ dB \ C_{tr,63-4000} = -6 \ dB \ C_{tr,125-4000} = -5 \ dB$
in one-third	-octave bands	by an engineering method.	
ne of test inst	luto	The University of Salford, Ac	peuplin Test Laboratory
		The University of Sallord, Ac	JOISIG LEST LADOIATORY

ar: Client Jentification: Acoustic Transmission Suite nen mounted by: Client ntification: PB18 DOUBLE SKIN of the specimen: Acoustic Panel System Please refer to Section 1 for a full description : NAP ure: I01.2 \pm 0.0 kPa ture: 23.1 \pm 0.3 °C thure: 23.1 \pm 0.3 °C thure: 10.2 \pm 0.0 kPa ture: 101.2 \pm 0.0 kPa ture: 101.2 \pm 0.0 kPa ture: 103.0 °C the test sample: 8.64 m² n volume: 136 m³ ancy R 1/1 octave 90 50 1 21.0 som volume: 25.9 yog 40	Petion of the test object HE FREQUENCY 63HZ IS NOT UKAS ACCREDITED Sound Reduction Index, R Shifted Reference Curve according to ISO 717-1
nen mounted by: Client ntification: PB18 DOUBLE SKIN of the specimen: Acoustic Panel System Please refer to Section 1 for a full description : NAP ure: I01.2 ± 0.0 kPa ture: 23.1 ± 0.3 °C thumidity: 30.0 ± 3.0 % nit area: 18.0 kg/m² he test sample: 8.64 m² n volume: 220 m³ ency R 1/1 octave I/1 octave	HE FREQUENCY 63HZ IS NOT UKAS ACCREDITED Sound Reduction Index, R
Intification: PB18 DOUBLE SKIN of the specimen: Acoustic Panel System Please refer to Section 1 for a full description : NAP ure: ure: 101.2 ± 0.0 kPa ture: ture: 23.1 ± 0.3 °C thumidity: 30.0 ± 3.0 % 	HE FREQUENCY 63HZ IS NOT UKAS ACCREDITED Sound Reduction Index, R
of the specimen: Acoustic Panel System Please refer to Section 1 for a full description NAP ure: 101.2 ± 0.0 kPa ture: 23.1 ± 0.3 °C The humidity: 30.0 ± 3.0 % int area: 18.0 kg/m ² the test sample: 8.64 m ² in volume: 136 m ³ 60 com volume: 220 m ³	HE FREQUENCY 63HZ IS NOT UKAS ACCREDITED Sound Reduction Index, R
Please refer to Section 1 for a full description NAP ure: 101.2 ± 0.0 kPa ture: 23.1 ± 0.3 °C The humidity: 30.0 ± 3.0 % int area: 18.0 kg/m ² the test sample: 8.64 m ² in volume: 136 m ³ 60 com volume: 220 m ³	HE FREQUENCY 63HZ IS NOT UKAS ACCREDITED Sound Reduction Index, R
ure: 101.2 ± 0.0 kPa ture: 23.1 ± 0.3 °C Th humidity: 30.0 ± 3.0 % nit area: 18.0 kg/m² the test sample: 8.64 m² n volume: 136 m³ ency R 1/1 octave 1	Sound Reduction Index, R
ture: 23.1 ± 0.3 °C TH humidity: 30.0 ± 3.0 % iit area: 18.0 kg/m ² he test sample: 8.64 m ² n volume: 136 m ³ 60 ency R 1/1 octave	Sound Reduction Index, R
humidity: 30.0 ± 3.0 % nit area: 18.0 kg/m² he test sample: 8.64 m² n volume: 136 m³ com volume: 220 m³ ency R 1/1 octave 1/1 octave	Sound Reduction Index, R
humidity: 30.0 ± 3.0 % nit area: 18.0 kg/m² he test sample: 8.64 m² n volume: 136 m³ xoom volume: 220 m³ ency R 1/1 octave 1/1 octave	
ait area: 18.0 kg/m² he test sample: 8.64 m² n volume: 136 m³ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	
he test sample: 8.64 m ² n volume: 136 m ³ 60 pom volume: 220 m ³	
n volume: 136 m ³ 60 soom volume: 220 m ³ ency R 1/1 octave	
ency R 1/1 octave	
ency R 1/1 octave	
1/1 octave	
1/1 octave 00 50 [dB] 00 50 21.0 00 50 i 25.9	
[dB] @ 50 Cr 21.0 21.0 25.9 25.9	
21.0 xy you up to 10 40	
21.0 5 25.9 40	
; 25.9 ² 5 25.9 ² 5 25.9 ² 5 25.9 ² 5 25.9 ² 5 25.9 ²	
i 25.9	
5 25.9	
2 I I I I I I I I I I I I I I I I I I I	
0 28.2	
30	
4	
29.3	
0 33.1 20	
/ 33.1	
0 245	
10	
10	
0 997	
0 33.7	
o Li	
63 125	
	Frequency, f, Hz \longrightarrow
g according to BS EN ISO 717-1	
(C; C _t) = 33 (-1 ; -2) dB	$C_{63-2000} = -1$ dB $C_{63-4000} = -1$ dB $C_{125-4000} = -1$ dB
ation based on laboratory measurement results obtained	$C_{tr,63-2000} = -3 dB C_{tr,63-4000} = -3 dB C_{tr,125-4000} = -3 dB$
e-third-octave bands by an engineering method.	
t institute: The University of Salford, Acoustic Te	est Laboratory

nt:		ound insulation of building Air Handlers Northern		Date of test: 08/01/15
nufacturer:		Client		
t room identifi	cation:	Acoustic Transmission S	Suite	
t specimen m	ounted by:	Client		
duct identifica	lion:	PB/SBP50 DOUBLE SH	(IN	
scription of the	specimen:	Acoustic Panel System Please refer to Section 1	for a full descri	ption of the test object
ing time:		NAP		
tic pressure:		101.3 ± 0.0 kPa		
temperature:		19.7 ± 0.3 °C	T	HE FREQUENCY 63HZ IS NOT UKAS ACCREDITED
ative air humid	dity:	37.3 ± 3.0 %		
ss per unit are	a:	34.2 kg/m ²		Sound Reduction Index, R
a, S, of the te		8.64 m ²		Shifted Reference Curve according to ISO 717-1
urce room volu		136 m ³ 60		
ceiving room v	volume:	220 m ³	1	
Frequency	R		1	
Ficquericy	1/1 octave		1	
[Hz]	[dB]	· 50	1	
[rix]	[00]	2	1	
63	22.7	Sound reduction index , R [dB]	-	
		tion	Т 4	i de la companya de
125	26.2	10 top	1	
123	-0.4	Đ.		
1	1	unc	1	
250	29.4	Ň	1	
1		30		
1	1		1	
500	30.0		i	
1 500	00.0		/ :	
1	1		1	
1000	36.4	20	+	
1000	50,4			
1	+		1	
1 2000	25.2		1	
2000	35.2	10	1	
Concernant of		10	1	
	22.0		:	
4000	33.6		1	
		0 1	125	250 500 1000 2000 40 Frequency, f, Hz
				riequency, i, H2
	cording to BS I Cru) = 34 (EN ISO 717-1 0 ; -2)dB		$C_{63-2000} = 0$ dB $C_{63-4000} = -1$ dB $C_{125-4000} = -1$ dB
		ratory measurement results	obtained	$C_{tr,83-2000} = -2 dB C_{tr,63-4000} = -2 dB C_{tr,125-4000} = -3 dB$
in one-third	-octave bands	by an engineering method.		
			ord, Acoustic Te	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Notes

Notes
